Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling.
نویسندگان
چکیده
To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project. http://www.physiome.org.nz/publications/nordsletten_blackett_ritman_bentley_smith_2005/folder_contents). A "U-shaped" relationship was observed between the arterial radius and the distance between the arterial and venous lumens. Veins were found to partially wrap around the artery more consistently for larger rather than smaller arteries. Intrarenal arteries were surrounded by an area of fibrous tissue, lacking capillaries, the thickness of which increased from ∼5 μm for the smallest arteries (<16-μm diameter) to ∼20 μm for the largest arteries (>200-μm diameter). Capillary density was greater near smaller arteries than larger arteries. No capillaries were observed between wrapped AV vessel pairs. The computational model comprised a single AV pair in cross section. Geometric parameters critical in renal oxygen transport were altered according to variations observed by CT and light microscopy. Lumen separation and wrapping of the vein around the artery were found to be the critical geometric factors determining the amount of oxygen shunted between AV pairs. AV oxygen shunting increases both as lumen separation decreases and as the degree of wrapping increases. The model also predicts that capillaries not only deliver oxygen, but can also remove oxygen from the cortical parenchyma close to an AV pair. Thus the presence of oxygen sinks (capillaries or tubules) near arteries would reduce the effectiveness of AV oxygen shunting. Collectively, these data suggest that AV oxygen shunting would be favored in larger vessels common to the cortical and medullary circulations (i.e., arcuate and proximal interlobular arteries) rather than the smaller vessels specific to the cortical circulation (distal interlobular arteries and afferent arterioles).
منابع مشابه
CALL FOR PAPERS Mathematical Modeling of Renal Function Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling
Bruce S. Gardiner, Sarah L. Thompson, Jennifer P. Ngo, David W. Smith, Amany Abdelkader, Brad R. S. Broughton, John F. Bertram, and Roger G. Evans School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; Department of Physiology, Monash University, Melbourne, Australia; Department of Pharmacology, Monash University, Melbourne, Australia; and De...
متن کاملCALL FOR PAPERS Renal Hypoxia Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting
Olgac U, Kurtcuoglu V. Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting. Am J Physiol Renal Physiol 308: F671–F688, 2015. First published December 10, 2014; doi:10.1152/ajprenal.00551.2014.—The primary aim of this study was to assess the plausibility of preglomerular arterial-tovenous oxygen shunting in the kidney. To this end, we have developed a...
متن کاملThe Bohr Effect Is Not a Likely Promoter of Renal Preglomerular Oxygen Shunting
The aim of this study was to evaluate whether possible preglomerular arterial-to-venous oxygen shunting is affected by the interaction between renal preglomerular carbon dioxide and oxygen transport. We hypothesized that a reverse (venous-to-arterial) shunting of carbon dioxide will increase partial pressure of carbon dioxide and decrease pH in the arteries and thereby lead to increased oxygen ...
متن کاملRenal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting.
The primary aim of this study was to assess the plausibility of preglomerular arterial-to-venous oxygen shunting in the kidney. To this end, we have developed a segment-wise three-dimensional computational model that takes into account transport processes in arteries, veins, cortical tissue, and capillaries. Our model suggests that the amount of preglomerular oxygen shunting is negligible. Cons...
متن کاملVascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney.
Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 5 شماره
صفحات -
تاریخ انتشار 2012